Copper nanocoils synthesized through solvothermal method
نویسندگان
چکیده
Recently helical nanostructures such as nanosprings and nanocoils have drawn great interests in nanotechnology, due to their unique morphologies and physical properties, and they may be potential building blocks in sorts of electromechanical, magnetic, photoelectronic and plasmonic devices at micro/nanoscales. In this report, multi-turns copper nanocoils were synthesized through a modified solvothermal method, in which the mixture of water and N-methyl-2-pyrrolidone (NMP) were selected as reaction medium and copolymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA 64E) as reductant. In the liquid solution, nanosprings could be formed from relaxed nanocoils and demonstrated high elasticity. These nanocoils and nanosprings are of single crystalline structure, with the characteristics wire diameters ranging from tens to a few hundreds of nanometers and the ring/coil diameters mostly ~10-35 microns. Their growth and deformation mechanisms were then investigated and discussed along with that of previously reported single-turn copper nanorings. This work could be of importance for researchers working on synthesis and applications of novel 1-D helical nanomaterials and their functional devices.
منابع مشابه
Effect of Temperature and Reaction Time on the Morphology and Phase Evolution of Self-assembled Cu7.2S4 Nanospheres Obtained from Nanoparticles and Nanorods Synthesized by Solvothermal Method
In this research, self-assembled copper sulfide nanospheres were synthesized by the solvothermal method and the effects of reaction parameters, including reaction time and reaction temperature on the morphology and phase evolution of copper sulfide nanostructures were investigated. For the identification of copper sulfide nanostructures, X-ray diffraction (XRD), infrared spectroscopy (FT-IR), f...
متن کاملUltrasonic-assisted solvothermal synthesis of self-assembled Copper Ferrite nanoparticles
The aim of this work was to characterize copper ferrite nanoparticles synthesized via solvothermal method and to investigate the effects of ultrasonic waves on the synthesis efficiency. Crystal structure, functional groups, microstructure, particle size, magnetic properties, specific surface area, porosity distribution and photocatalytic activity of the synthesized nanoparticles were also inves...
متن کاملSolvothermal Synthesis of Cobalt and Copper Sulfides Nanoparticles with High Light Absorptance for New Solar Selective Coatings
New selective coating materials are developed and used in advanced solar collector and absorber designs with improved efficiency. Cobalt and Copper sulfides nanoparticles are high interest for absorbers of solar thermal collectors due to their optical properties and high absorptance in the solar wavelength range (> 96%). In the present work, Cobalt and Copper sulfides nanoparticles were synthes...
متن کاملSolvothermal synthesis of copper nanoparticles loaded on multi-wall carbon nanotubes as catalyst for thermal decomposition of ammonium perchlorate
Copper nanoparticles were synthesized on multiwall carbon nanotubes, (Cu)/(MWCNTs), based on solvothermal method. The used reagents include MWCNTs, cupric nitrate trihydrate (Cu (NO3)2.3H2O), diethylene glycol (DEG), diethanol amine. Characterization of Cu/MWCNTS nanoparticles was performed by techniques of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction sp...
متن کاملStudy on Structural and Optical Properties of Wurtzite Cu2ZnSnS4 Nanocrystals Synthesized via Solvothermal Method
A simple low-cost solvothermal method was applied to synthesize hexagonal wurtzite Cu2ZnSnS4 (CZTS) nanoparticles with different morphologies using Polyvinylpyrrolidone (PVP) as a capping ligand and copper and zinc acetate salts at 180 and 220 ℃. The resulting sphere-like and flower-like nanoparticles synthesized at 180 and 220℃</...
متن کامل